Journal of Organometallic Chemistry, 399 (1990) 83–92 Elsevier Sequoia S.A., Lausanne JOM 21169

Titanocen-Trifluoracetatokomplexe: Die Molekülstrukturen von $[Cp_2Ti(OCOCF_3)]_2\mu$ -O und $Cp_2Ti(OCOCF_3)_2$

Georg S. Herrmann, Helmut G. Alt *

Laboratorium für Anorganische Chemie der Universität Bayreuth, Universitätsstraße 30, W-8580 Bayreuth (Deutschland)

und Ulf Thewalt *

Sektion für Röntgen- und Elektronenbeugung der Universität Ulm, Oberer Eselsberg, W-7900 Ulm (Deutschland)

(Eingegangen den 5. Juni 1990)

Abstract

The η^1 -alkenyl complexes Cp₂Ti(CR=CHR)(OCOCF₃) (R = H, Me) react with water and trifluoroacetic acid to give the oxo-bridged dinuclear complex [Cp₂Ti(OCOCF₃)]₂ μ -O (1) and the bis-carboxylato complex Cp₂Ti(OCOCF₃)₂ (2). The crystal and molecular structures of 1 and 2 have been determined by X-ray diffraction.

Zusammenfassung

Die η^1 -Alkenyl-Komplexe Cp₂Ti(CR=CHR)(OCOCF₃) (R = H, Me) reagieren mit Wasser und Trifluoreressigsäure zum sauerstoffverbrückten Zweikernkomplex [Cp₂Ti(OCOCF₃)]₂ μ -O (1) und zum Bis-Carboxylato-Komplex Cp₂Ti(OCOCF₃)₂ (2). Die Molekülstrukturen von 1 und 2 konnten röntgenographisch bestimmt werden.

Einleitung

Wir haben kürzlich über das große Synthesepotential der Acetylenkomplexe $Cp_2Ti(PMe_3)(C_2H_2)$ und $Cp_2Ti(C_2Me_2)$, die bei der 1:1-Umsetzung von $Cp_2Ti(PMe_3)_2$ mit dem entsprechenden Alkin entstehen [1,2], berichtet: Mit ungesättigten Verbindungen, wie Aceton, Acetaldehyd, Kohlendioxid oder Ethylen, bilden diese Alkinkomplexe unter C,C-Verknüpfung fünfgliedrige Titanacyclen [2,3]; die Umsetzungen mit Alkoholen, Wasser und Säuren führen dagegen zu η^1 -Alkenyl-Koordinationsverbindungen [4,5].

Im folgenden behandeln wir das Reaktionsverhalten der η^1 -Alkenyl-Trifluoracetato-Komplexe Cp₂Ti(CR=CHR)(OCOCF₃) (R = H, Me) [5] gegenüber Wasser und überschüssiger Trifluoressigsäure. Die Molekülstrukturen von $[Cp_2Ti(OC-OCF_3)]_2\mu$ -O (1) und $Cp_2Ti(OCOCF_3)_2$ (2) werden mit denen ähnlicher oxoverbrückter Zweikern- bzw. monomerer Bis-Carboxylato-Komplexe sowie verwandter Derivate verglichen.

Ergebnisse und Diskussion

Darstellung der Komplexe $[Cp_2Ti(OCOCF_3)]_2\mu$ -O (1) und $Cp_2Ti(OCOCF_3)_2$ (2)

Die Umsetzung der Alkinkomplexe $Cp_2Ti(PMe_3)(C_2H_2)$ und $Cp_2Ti(C_2Me_2)$ mit Trifluoressigsäure führt zu den instabilen η^1 -Alkenylkomplexen $Cp_2Ti(CR=CHR)$ -(OCOCF₃) (R = H, Me) [5], die mit Wasser zum oxo-verbrückten Zweikernkomplex 1 und mit einem Überschuß an Trifluoressigsäure zur Bis-Carboxylatoverbindung 2, jeweils unter Alkenabspaltung, weiterreagieren.

Die Komplexe 1 und 2 werden dabei in hohen Ausbeuten (ca. 85-90%) erhalten. Sauerstoffverbrückte Carboxylatoverbindungen vom Typ 1, wie z.B. [Cp₂Ti-(OCOR)]₂O (R = Me, Ph), wurden erst vor kurzem beschrieben [6]. Sie entstehen in

Fig. 1. ORTEP-Darstellung von $[Cp_2Ti(OCOCF_3)]_2O$ (1). Die Ellipsoide sind entsprechend 20%-iger Wahrscheinlichkeit gezeichnet.

geringen Ausbeuten bei der Umsetzung von $Cp_2TiCH_2C(Me)_2CH_2$ mit den Säureanhydriden (RCO)₂O (R = Me, Ph).

Dagegen sind monomere Bis-Carboxylatokomplexe des Titanocens aufgrund ihrer einfachen Darstellungsmöglichkeit aus Titanocendichlorid und dem entsprechenden Carbonsäure-Anion schon seit langem bekannt (vgl. [7]). Auf diese Weise wurde auch 2 hergestellt [8–11]; eine alternative Route stellt die Umsetzung von Cp_2TiPh_2 mit Trifluoressigsäure dar [12].

• •	• •	()		
Ti(1)-O(1)	1.836(2)	Ti(2)–O(1)	1.836(2)	
Ti(1)-O(2)	2.037(2)	Ti(2)-O(4)	2.038(3)	
Ti(1)-Z(10)	2.08	Ti(2)-Z(20)	2.09	
Ti(1)-Z(15)	2.09	Ti(2)-Z(25)	2.07	
C(1)-O(2)	1.278(5)	C(3)-O(4)	1.281(5)	
C(1)-O(3)	1.208(5)	C(3)-O(5)	1.206(6)	
C(1)-C(2)	1.513(6)	C(3)-C(4)	1.525(7)	
C(2)-F(1)	1.321(6)	C(4)-F(4)	1.315(7)	
C(2)-F(2)	1.310(6)	C(4)-F(5)	1.265(8)	
C(2)-F(3)	1.278(6)	C(4)-F(6)	1.288(7)	
$\langle C-C \rangle$ in den Cp-Ringe	n: 1.39±0.02			
Ti(1)-O(1)-Ti(2)	173.3(1)			
O(1)-Ti(1)-O(2)	93.2(1)	O(1)-Ti(2)-O(4)	94.2(1)	
Z(10)-Ti(1)-Z(15)	131.5	Z(20)-Ti(2)-Z(25)	131.7	
Ti(1)-O(2)-C(1)	136.5(2)	Ti(2)-O(4)-C(3)	136.0(3)	
O(2)-C(1)-O(3)	129.5(4)	O(4)-C(3)-O(5)	130.0(4)	
O(2)-C(1)-C(2)	111.7(3)	O(4) - C(3) - C(4)	111.9(4)	
O(3)-C(1)-C(2)	118.8(4)	O(5)-C(3)-C(4)	118.1(4)	

Ausgewählte Bindungsabstände (Å) und -winkel (°) in 1^a

Tabelle 1

^a Z(n) sind die Zentren der C(n) enthaltenden Cp-Ringe.

Fig. 2. ORTEP-Darstellung von $Cp_2Ti(OCOCF_3)_2$ (2). Die Ellipsoide sind entsprechend 10%-iger Wahrscheinlichkeit gezeichnet.

Die Bildung von 2 sowie mehrere unlösliche Zersetzungsprodukte werden auch beim Stehenlassen einer Lösung der Alkenylverbindungen $Cp_2Ti(CR=CHR)(OC-OCF_3)$ (R = H, Me) bei Raumtemperatur beobachtet.

Die direkte Umsetzung des Bisphosphankomplexes $Cp_2Ti(PMe_3)_2$ [13] mit Trifluoressigsäure und Wasser bzw. überschüssiger Trifluoressigsäure führt nicht zu den Verbindungen 1 und 2. Hierbei werden lediglich noch nicht identifizierte instabile Ti^{III}-Komplexe gebildet. Folglich gelingt die Darstellung von 1 und 2 mit CF₃COOH nur, wenn eine Protonenübertragung auf einen organischen Liganden (z.B. Alkin oder Alkenylgruppe) möglich ist.

Festkörperstrukturen von $[Cp_2Ti(OCOCF_3)]_2\mu$ -O (1) und $Cp_2Ti(OCOCF_3)_2$ (2)

Die Molekülstruktur des oxo-verbrückten Zweikernkomplexes 1 wird in Fig. 1, die der Bis-Trifluoracetato-Verbindung 2 in Fig. 2 gezeigt. Die wichtigeren Bindungsabstände und -winkel sind in den Tab. 1 und 2 aufgeführt.

In den beiden Verbindungen 1 und 2 weisen die Titanzentren eine für die meisten Titanocen-Derivate typische, in erster Näherung tetraedrische Koordinationssphäre auf. Im Gegensatz dazu zeigt der Titan(III)-Komplex $[Cp_2Ti]_2O$ [14] eine trigonalplanare Struktur.

Ti-O(1)	1.979(5)	O(1)-Ti-O(3)	89.7(2)	
Ti-O(3)	1.970(6)	Z(10)-Ti-Z(20)	133.3	
Ti-Z(10)	2.06	Ti-O(1)-C(1)	142.8(5)	
Ti-Z(20)	2.05	Ti-O(3)-C(3)	149.2(6)	
C(1)-O(1)	1.265(8)	O(1)-C(1)-O(2)	127.9(7)	
C(1)-O(2)	1.217(10)	O(1)-C(1)-C(2)	112.7(7)	
C(1)-C(2)	1.506(11)	O(2) - C(1) - C(2)	119.4(7)	
		O(3)-C(3)-O(4)	126.4(9)	
$\langle C-C \rangle$ in den Cp	-Ringen:	O(3)-C(3)-C(4)	113.6(8)	
1.38 ± 0.05		O(4) - C(3) - C(4)	119.9(9)	

Ausgewählte Bindungsabstände (Å) und -winkel (°) in 2^a

Tabelle 2

^a Z(n) sind die Zentren der C(n) enthaltenden Cp-Ringe.

Die Ti–O-Bindungsabstände in der Oxo-Brücke der Neutralkomplexe des Typs 1, $[Cp_2Ti(X)]_2O$ (X = CMe=CHMe [5], CCF₃=CHCF₃ [15], CPh=CHPh [16], Et [17], Cl [18], ONO₂ [19]), wie auch der kationischen Verbindungen { $[Cp_2Ti(H_2O)]_2O$ }²⁺ [20,21] und { $[Cp_2Ti(NCCH=CHPh)]_2O$ }²⁺ [22] bewegen sich in einem relativ engen Bereich von 1.83 bis 1.86 Å. Jedoch ist die Tendenz erkennbar, dass eine kürzere Ti–O-Bindung eine Vergrösserung des Ti–O–Ti-Winkels hervorruft, und damit eine Annäherung an die Linearität der Ti–O–Ti-Gruppe erfolgt. So besitzt beispielsweise der Komplex [$Cp_2Ti(CPh=CHPh)$]₂O [16] mit Ti–O-Abständen von 1.85 und 1.86 Å einen kleineren Ti–O–Ti-Winkel (168.8°) als die Verbindung 1 (173.3°), die kürzere Ti–O-Bindungslängen (1.836 Å) aufweist. Die Linearität der Ti–O–Ti-Gruppe ist im Monocyclopentadienyl-Komplex [$Cp_Ti(L_2]_2O$ [23,24] mit einem extrem verkürzten Ti–O-Abstand (1.777 Å) verwirklicht. [Cp_2Ti_2O [14] läßt sich vermutlich aufgrund seiner trigonal-planaren Struktur nicht in diese Reihe einordnen.

Der Ti-O-Abstand in der Oxo-Brücke (1.836 Å) von 1 ist wesentlich kürzer als die Ti-O-Bindung zum Trifluoracetato-Liganden (2.037 Å). Im einkernigen Bis-Trifluoracetato-Komplex 2 ist die Aufweitung dieser Bindung ebenfalls wie auch in anderen Bis-Carboxylatoverbindungen Cp₂Ti(OCOR)₂ (R = Ph [25,26], CH= CHCOOH [27], C₆H₄-NO₂ [28]) zu beobachten. Sie dürfte durch die benachbarte Carbonylgruppe hervorgerufen werden. Während sich jedoch die beiden Ti-O-Bindungslängen in den Komplexen Cp₂Ti(OCOPh)₂ [26] und Cp₂Ti(OCOC₆H₄-NO₂)₂ [28] deutlich unterschieden, sind die Ti-O-Abstände in 2 sowie der zweiten Modifikation von Cp₂Ti(OCOPh)₂ [25] und Cp₂Ti(OCOCH=CHCOOH)₂ [27] annähernd gleich lang. Dies kann auf die Möglichkeit einer zusätzlichen π -Bindung des Sauerstoffatoms zum Titan zurückgeführt werden, wobei die formalen 16-Elektronen-Komplexe eine 18-Elektronenkonfiguration erhalten. Bei gleicher Bin-

Tabelle 3

Kristalldaten und Angaben zu den Strukturbestimmungen

	[Cp ₂ Ti(OCOCF ₃)] ₂ O	Cp ₂ Ti(OCOCF ₃) ₂	
	(1)	(2)	
Formel	C ₂₄ H ₂₀ F ₆ O ₅ Ti ₂	C ₁₄ H ₁₀ F ₆ O ₄ Ti	
Molmasse, g/mol	598.17	404.10	
Raumgruppe	C2/c	$P2_1/c$	
<i>a</i> , Å	29.020(10)	10.329(3)	
b, Å	10.579(2)	10.824(2)	
c, Å	16.460(3)	15.052(5)	
<i>β</i> , °	102.68(3)	102.21(3)	
Z	8	4	
$D_{\rm ber}, {\rm g/cm^3}$	1.612	1.632	
μ , cm ⁻¹	6.6	5.4	
$\theta_{\rm max}, \circ$	23	25	
unabh. Refl.	3415	2881	
benutzte Refl.	3212	2117	
Kriterium	$F_{\rm o} \ge 1\sigma(F_{\rm o})$	$F_{\rm o} \ge 2\sigma(F_{\rm o})$	
R	0.049	0.092	
$R_{\rm w}({\rm F})$	0.054	0.103	
max. Restelektr			
dichte, e/Å ³	0.56	0.77	

dungslänge sollte demnach jedes Sauerstoffatom partiellen Doppelbindungscharakter besitzen und somit jeweils ein Elektron zur Verfügung stellen, während bei deutlich unterschiedlichen Ti-O-Abständen ein Sauerstoffatom vermutlich als Dreielektronendonor fungiert und die zweite Ti-O-Bindung als Einfachbindung angesehen werden kann.

Eine Verlängerung der Ti-O-Bindung bewirkt gleichzeitig — wie im Falle der Ti-O-Ti-Gruppe — eine Verkleinerung des Ti-O-C-Bindungswinkels. Die Zweikernverbindung 1 besitzt relativ lange Ti-O-Bindungen (2.037 und 2.038 Å) zum Trifluoracetato-Liganden und dementsprechend kleine Bindungswinkel (136.5 und 136.0°). Die beiden Extreme sind in der einen Modifikation von $Cp_2Ti(OCOPh)_2$ [26] zu beobachten: Ein Ligand mit langer Bindung (1.995 Å) und kleinem Winkel

Tabelle 4

Atomparameter von [Cp₂Ti(OCOCF₃)]₂O (1)

Atom	x	у	Z	U _{eq}
Ťi(1)	0.15778(2)	-0.05597(5)	0.05720(4)	0.036(1)
O(1)	0.1270(1)	0.0801(2)	0.0899(1)	0.037(1)
O(2)	0.2208(1)	0.0365(2)	0.0763(2)	0.046(1)
O(3)	0.2763(1)	-0.0752(3)	0.0316(3)	0.091(2)
C(1)	0.2625(1)	0.0119(4)	0.0674(3)	0.053(2)
C(2)	0.2977(1)	0.1108(5)	0.1084(3)	0.066(3)
F(1)	0.3414(1)	0.0804(4)	0.1054(3)	0.139(3)
F(2)	0.2993(1)	0.1182(4)	0.1884(2)	0.116(3)
F(3)	0.2887(1)	0.2224(3)	0.0793(3)	0.154(3)
C(10)	0.1339(2)	0.0394(4)	-0.0790(2)	0.057(2)
C(11)	0.0972(1)	-0.0331(4)	-0.0669(3)	0.060(3)
C(12)	0.1116(2)	- 0.1594(4)	-0.0604(3)	0.071(3)
C(13)	0.1589(2)	-0.1628(5)	-0.0699(3)	0.075(3)
C(14)	0.1719(2)	-0.0377(5)	-0.0817(3)	0.064(3)
C(15)	0.1281(2)	-0.2150(5)	0.1319(4)	0.088(4)
C(16)	0.1634(3)	-0.2710(5)	0.1013(4)	0.104(5)
C(17)	0.2042(2)	-0.2186(7)	0.1364(5)	0.097(5)
C(18)	0.1970(2)	-0.1309(5)	0.1930(3)	0.083(4)
C(19)	0.1495(2)	-0.1269(4)	0.1926(3)	0.077(3)
Ti(2)	0.10038(2)	0.22776(6)	0.11616(4)	0.036(1)
O(4)	0.0830(1)	0.2897(2)	-0.0039(2)	0.050(1)
O(5)	0.0652(1)	0.4974(3)	-0.0130(2)	0.094(2)
C(3)	0.0670(2)	0.3925(4)	-0.0408(3)	0.061(3)
C(4)	0.0454(2)	0.3711(6)	-0.1329(3)	0.082(3)
F(4)	0.0477(2)	0.4726(4)	-0.1779(2)	0.154(3)
F(5)	0.0018(1)	0.3464(6)	-0.1445(3)	0.196(5)
F(6)	0.0649(2)	0.2840(4)	-0.1686(2)	0.133(3)
C(20)	0.0416(2)	0.0749(4)	0.1344(3)	0.070(3)
C(21)	0.0201(1)	0.1536(5)	0.0703(3)	0.074(3)
C(22)	0.0177(2)	0.2739(5)	0.1020(4)	0.078(4)
C(23)	0.0381(2)	0.2720(5)	0.1864(4)	0.087(4)
C(24)	0.0547(2)	0.1459(5)	0.2069(3)	0.077(3)
C(25)	0.1718(2)	0.2524(4)	0.2170(4)	0.086(3)
C(26)	0.1392(2)	0.3340(4)	0.2396(3)	0.079(3)
C(27)	0.1278(2)	0.4259(4)	0.1782(3)	0.065(3)
C(28)	0.1544(2)	0.4017(4)	0.1177(3)	0.060(3)
C(29)	0.1813(1)	0.2929(4)	0.1418(4)	0.071(3)

(135.2°), der zweite mit kurzem Abstand (1.894 Å) und großem Ti-O-C-Winkel (168.7°). Dagegen nimmt der Bis-Trifluoracetatokomplex 2 mit Ti-O-Abständen von 1.979 und 1.970 Å und den Ti-O-C-Winkeln von 142.8 und 149.2° eine Mittelstellung ein. Auch die zweikernigen Carboxylatoverbindungen [Cp₂Ti(OC-OCH=CHOCO)]₂ [29] und [Cp₂Ti(OCC=COCO)]₂ [30] lassen sich in diese Reihe einordnen; dagegen sind bei den fünfgliedrigen Metallacyclen Cp₂Ti(C₂O₄) [27], Cp₂Ti(C₆H₄CO₂) [31], Cp₂Ti(CPh=CHCO₂) [32] und [(MeCp)₂Ti(CCO₂)]₂ [33] aufgrund der Ringspannung wesentlich kleinere Ti-O-C-Winkel (≈ 120°) zu beobachten.

Im Komplex 2 wird mit 89.7° der bisher kleinste O-Ti-O-Winkel für Titanocenbis-Carboxylatokomplexe gefunden. Er liegt jedoch zusammen mit den vorher aufgeführten monomeren Carboxylatoverbindungen in einem relativ engen Bereich (bis 92°). In weiteren vergleichbaren monomeren Komplexen des Typs Cp₂TiX₂ bewegen sich die X-Ti-X-Bindungswinkel — unabhängig vom gebundenen Heteroatom — im allgemeinen zwischen 91 und 95°, so wie dies zum Beispiel in den Komplexen Cp₂Ti(OSO₂CF₃)₂ (91.2° [34]), Cp₂Ti(NCS)₂ (93.9° [35]), Cp₂Ti(NCO)₂ (94.7° [36]), Cp₂Ti(N₃)₂ (94.1° [37]) und Cp₂TiCl₂ (94.5 [38]) gefunden wurde. Auch Kationkomplexe des Typs [Cp₂Ti(H₂O)₂]²⁺ (90.4° [39], 92.7° [40]) zeigen ähnliche Bindungswinkel. Lediglich in den Verbindungen Cp₂Ti(FAsF₅)₂ (86.3° [41]) und Cp₂Ti(ONO₂)₂ (69.5° [42]) liegen kleinere Winkel vor. Vermutlich entscheiden allein sterische und elektronische Gründe der jeweiligen Liganden über den

Tabelle 5

Atom	x	у	Z	U _{eq}
Ti	0.2499(1)	0.1812(1)	0.1848(1)	0.047(1)
O(1)	0.2233(5)	0.3549(4)	0.1440(3)	0.065(2)
O(2)	0.0575(6)	0.4584(7)	0.1836(5)	0.103(3)
C(1)	0.1511(7)	0.4487(7)	0.1467(5)	0.064(3)
C(2)	0.1930(9)	0.5585(8)	0.0981(6)	0.079(3)
F(1)	0.1287(13)	0.6528(8)	0.1034(9)	0.255(3)
F(2)	0.3061(9)	0.5907(10)	0.1204(9)	0.263(3)
F(3)	0.1767(15)	0.5436(9)	0.0148(5)	0.254(3)
C(10)	0.0622(9)	0.0538(9)	0.1385(6)	0.092(3)
C(11)	0.1765(12)	-0.0102(9)	0.1220(8)	0.125(3)
C(12)	0.2109(12)	0.0630(13)	0.0491(8)	0.129(3)
C(13)	0.1289(10)	0.1563(11)	0.0315(6)	0.100(3)
C(14)	0.0419(9)	0.1554(10)	0.0825(6)	0.087(3)
O(3)	0.4266(5)	0.1830(5)	0.1549(4)	0.077(2)
O(4)	0.5418(9)	0.0189(7)	0.1487(9)	0.190(3)
C(3)	0.5233(8)	0.1254(8)	0.1399(7)	0.081(3)
C(4)	0.6254(10)	0.2058(10)	0.1133(8)	0.100(3)
F(4)	0.6743(11)	0.2854(8)	0.1694(7)	0.209(3)
F(5)	0.5911(13)	0.2595(16)	0.0455(9)	0.373(3)
F(6)	0.7300(9)	0.1459(11)	0.1085(11)	0.280(3)
C(20)	0.1665(9)	0.1945(8)	0.3169(5)	0.079(3)
C(21)	0.2344(9)	0.0809(8)	0.3212(5)	0.081(3)
C(22)	0.3643(9)	0.1032(8)	0.3266(6)	0.081(3)
C(23)	0.3832(9)	0.2326(9)	0.3285(5)	0.082(3)
C(24)	0.2650(9)	0.2886(8)	0.3246(4)	0.076(3)

Atomparameter von $Cp_2Ti(OCOCF_3)_2$ (2)

X-Ti-X-Bindungswinkel, da kein unmittelbarer Zusammenhang zum Cp₂Ti-Fragment und dessen Z-Ti-Z-Winkel (Z = Zentrum des Cp-Rings) zu erkennen ist. Bei allen genannten monomeren Verbindungen wurden Z-Ti-Z-Winkel zwischen 131 und 134° gefunden.

Experimenteller Teil

Alle Operationen wurden routinemäßig unter Luft- und Feuchtigkeitsausschluß in Argon-Atmosphäre durchgeführt. Die verwendeten Lösungsmittel waren wasserfrei und frisch destilliert. Der Bisphosphan-Komplex $Cp_2Ti(PMe_3)_2$ wurde nach Literaturangaben dargestellt [13]. Die spektroskopische Charakterisierung von 1 und 2 und die Elementaranalyse von 1 wurden bereits beschrieben [5].

Darstellung von $[Cp_2Ti(OCOCF_3)]_2\mu$ -O (1)

0.33 g (1 mmol) Cp₂Ti(PMe₃)₂ werden in ca. 50 ml Tetrahydrofuran gelöst und bei Raumtemperatur mit der äquimolaren Menge des Alkins (22.4 ml C₂H₂ bzw. 78.3 μ 1 C₂Me₂) umgesetzt. Es bildet sich eine dunkelblau-violette Lösung von Cp₂Ti(PMe₃)(C₂H₂) bzw. eine gelbgrüne Lösung von Cp₂Ti(C₂Me₂), die mit 1–1.5 mmol Trifluoressigsäure umgesetzt wird. Nach ca. 15-minütigem Rühren wird die Lösung mit einem Tropfen destilliertem Wasser versetzt und weitere 30 Minuten gerührt. Dann wird das Lösungsmittel abgezogen, der Rückstand mit einem Pentan/Toluol-Gemisch extrahiert und das Lösungsmittel stark eingeengt. Bei – 78°C fällt 1 aus. Nach dem Dekantieren der Mutterlauge wird der Rückstand im Hochvakuum getrocknet. Die Feinkristallisation von 1 erfolgt aus CHCl₃. Ausbeute: ca. 90%.

Darstellung von $Cp_2Ti(OCOCF_3)_2$ (2)

Eine Tetrahydrofuran-Lösung der Alkinkomplexe $Cp_2Ti(PMe_3)(C_2H_2)$ bzw. $Cp_2Ti(C_2Me_2)$, die wie oben beschrieben hergestellt wurde, wird innerhalb einer halben Stunde zweimal mit je 2.5 mmol Trifluoressigsäure versetzt und anschließend ca. 2 Stunden bei Raumtemperatur gerührt. Dann wird das Lösungsmittel abgezogen. Der Rückstand wird mehrmals mit Pentan gewaschen, in wenig Toluol aufgenommen und die Lösung in kaltes Pentan getropft. Dabei fällt **2** aus. Das Produkt wird nach dem Dekantieren der überstehenden Lösung im Hochvakuum getrocknet. Die Feinkristallisation von **2** erfolgt aus CHCl₃. Ausbeute: ca. 85%.

Röntgenkristallographie

Die Röntgenmessungen erfolgten mit Graphit-monochromatisierter Mo- K_{α} -Strahlung ($\lambda = 0.71069$ Å) auf einem Philips PW1100-Einkristalldiffraktometer. Die Kristalle von 1 und 2 waren auf Glasfäden aufgeklebt. Die Kristalldaten sind in Tabelle 3 aufgeführt. Intensitätsdaten wurden im $\theta/2\theta$ -Modus gemessen. Absorptionskorrekturen wurden nicht angebracht. Die Metallatome wurden mittels der Pattersonmethode lokalisiert. Die übrigen Nicht-H-Atome konnten in ΔF -Synthesen lokalisiert werden. Die H-Atome wurden an ihren berechneten Positionen bei den abschließenden F_c -Berechnungen berücksichtigt. Die F-Atome und O(4) in 2 weisen nach der Verfeinerung besonders hohe Temperaturfaktoren auf. Dies deutet auf eine Lagefehlordnung dieser Atome hin. Die abschließenden Atomparameter sind in den Tabellen 4 and 5 zusammengestellt. Die Rechnungen wurden mit dem

SHELX-76-Programmsystem [43] durchgeführt. Weitere Einzelheiten zur Strukturbestimmung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-54374, der Autoren und des Zeitschriftenzitats angefordert werden.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die finanzielle Unterstützung.

Literatur

- 1 H.G. Alt, H.E. Engelhardt, M.D. Rausch und L.B. Kool, J. Am. Chem. Soc., 107 (1985) 3717; idem, J. Organomet. Chem., 329 (1987) 61.
- 2 H.G. Alt und G.S. Herrmann, J. Organomet. Chem., 390 (1990) 159.
- 3 H.G. Alt, G.S. Herrmann, M.D. Rausch und D.T. Mallin, J. Organomet. Chem., 356 (1988) C53.
- 4 H.G. Alt, G.S. Herrmann und M.D. Rausch, J. Organomet. Chem., 356 (1988) C50.
- 5 G.S. Herrmann, H.G. Alt und U. Thewalt, J. Organomet. Chem., 393 (1990) 83.
- 6 L.F. Cannizzo und R.H. Grubbs, J. Org. Chem., 50 (1985) 2316.
- 7 G. Wilkinson, F.G.A. Stone und E.W. Abel, Comprehensive Organometallic Chemistry, 3 (1982) 377.
- 8 G.V. Drozdov, A.L. Klebanskii und V.A. Bartashov, Zh. Obshch. Khim., 32 (1962) 2360; J. Gen. Chem. USSR (Engl. Transl.), 32 (1962) 2359.
- 9 H.C. Beachell und S.A. Butter, Inorg. Chem., 4 (1965) 1133.
- 10 R.B. King und R.N. Kapoor, J. Organomet. Chem., 15 (1968) 457.
- 11 L. Saunders und L. Spirer, Polymer, 6 (1985) 635.
- 12 S.K. Shakshooki, Libyan J. Sci. B, 4 (1975) 41.
- 13 L.B. Kool, M.D. Rausch, H.G. Alt, M. Herberhold, U. Thewalt und B. Wolf, Angew. Chem., 97 (1985) 425; Angew. Chem., Int. Ed. Engl., 24 (1985) 394.
- 14 B. Honold, U. Thewalt, M. Herberhold, H.G. Alt, L.B. Kool und M.D. Rausch, J. Organomet. Chem., 314 (1986) 105.
- 15 M.D. Rausch, D.J. Sikora, D.C. Hrncir, W.E. Hunter und J.L. Atwood, Inorg. Chem., 19 (1980) 3817.
- 16 V.B. Shur, S.Z. Bernadyuk, V.V. Burlakov, V.G. Andrianov, A.I. Yanovsky, Y.T. Struchkov und M.E. Vol'pin, J. Organomet. Chem., 243 (1983) 157.
- 17 H.G. Alt, K.-H. Schwind, M.D. Rausch und U. Thewalt, J. Organomet. Chem., 349 (1988) C7.
- 18 Y. Le Page, J.D. McCowan, B.K. Hunter und R.D. Heyding, J. Organomet. Chem., 193 (1980) 201.
- 19 U. Thewalt und H.-P. Klein, Z. Anorg. Allg. Chem., 479 (1981) 113.
- 20 U. Thewalt und G. Schleussner, Angew. Chem., 90 (1978) 559; Angew. Chem., Int. Ed. Engl., 17 (1978) 531.
- 21 U. Thewalt und B. Kebbel, J. Organomet. Chem., 150 (1978) 59.
- 22 K. Berhalter und U. Thewalt, J. Organomet. Chem., 332 (1987) 123.
- 23 U. Thewalt und D. Schomburg, J. Organomet. Chem., 127 (1977) 169.
- 24 P. Corradini und G. Allegra, J. Am. Chem. Soc., 81 (1959) 5510.
- 25 D.M. Hoffman, N.D. Chester und R.C. Fay, Organometallics, 2 (1983) 48.
- 26 K. Döppert, H.-P. Klein und U. Thewalt, J. Organomet. Chem., 303 (1986) 205.
- 27 K. Döppert, R. Sanchez-Delgado, H.-P. Klein und U. Thewalt, J. Organomet. Chem., 233 (1982) 205.
- 28 T.S. Kuntsevich, E.A. Gladkikh, V.A. Lebedev, A.N. Lineva und N.V. Belov, Kristallografiya, 21 (1976) 80; Sov. Phys. Crystallogr. (Engl. Transl.), 21 (1976) 40.
- 29 H.-P. Klein, K. Döppert und U. Thewalt, J. Organomet. Chem., 280 (1985) 203.
- 30 T. Güthner und U. Thewalt, J. Organomet. Chem., 350 (1988) 235.
- 31 I.S. Kolomnikov, T.S. Lobeeva, V.V. Gorbachevskaya, G.G. Aleksandrov, Y.T. Struchkov und M.E. Vol'pin, J. Chem. Soc., Chem. Commun., (1971) 972.
- 32 E. Samuel, J.L. Atwood und W.E. Hunter, J. Organomet. Chem., 311 (1986) 325.
- 33 D.R. Corbin, J.L. Atwood und G.D. Stucky, Inorg. Chem., 25 (1986) 98.
- 34 U. Thewalt und H.-P. Klein, Z. Krist., 153 (1980) 307.

- 35 A.C. Villa, A.G. Manfredotti und C. Guastini, Acta Cryst. B, 32 (1976) 909.
- 36 S.J. Anderson, D.S. Brown und A.H. Norbury, J. Chem. Soc., Chem. Commun., (1974) 996.
- 37 E.R. de Gil, M. de Burguera und A.V. Rivera, Acta Cryst. B, 33 (1977) 578.
- 38 A. Clearfield, D.K. Warner, C.H. Saldarriaga-Molina, R. Ropal und I. Bernal, Can. J. Chem., 53 (1975) 1622.
- 39 U. Thewalt und H.-P. Klein, J. Organomet. Chem., 194 (1980) 297.
- 40 H.-P. Klein und U. Thewalt, Z. Anorg. Allg. Chem., 476 (1981) 62.
- 41 T. Klapötke und U. Thewalt, J. Organomet. Chem., 356 (1988) 173.
- 42 H.-P. Klein und U. Thewalt, J. Organomet. Chem., 206 (1981) 69.
- 43 SHELX-76-Programmsystem; G.M. Sheldrick, Göttingen, unveröffentlicht.